Easy balanced mixing for long-tailed data
WebApr 1, 2024 · Request PDF Easy balanced mixing for long-tailed data In long-tailed datasets, head classes occupy most of the data, while tail classes have very few … WebModern real-world large-scale datasets often have long-tailed label distributions [51, 28, 34, 12, 15, 50, 40]. On these datasets, deep neural networks have been found to perform poorly on less represented classes [17, 51, 5]. This is particularly detrimental if the testing criterion places more emphasis on minority classes.
Easy balanced mixing for long-tailed data
Did you know?
WebLong-tailed classification. For the long-tailed classifi-cation task, there is a rich body of widely used meth-ods including data re-sampling [3] and re-weighting [2,7]. Recent works [19,48] reveal the effectiveness of using different sampling schemes in decoupled training stages. Instance-balanced sampling is found useful for the first fea ... Webpact of easy background samples with a specialized modu-lating factor. This loss redistribution technique works well under the category-balanced distribution but is inadequate to handle the imbalance problem among foreground cat-egories in the long-tailed situation. To solve this issue, we start from the existing solutions (e.g. EQLv2 [39]) in
WebMar 22, 2024 · Finally, to approximately maximize the mutual information between the two views, we propose Siamese Balanced Softmax and joint it with the contrastive loss for one-stage training. Extensive experiments demonstrate that ResCom outperforms the previous methods by large margins on multiple long-tailed recognition benchmarks. Webmix-up data augmentation [43]. We use their default imple-mentations available, and we adapt these to the long-tailed settings. 3.1. CIFAR experiments Fine-tuning losses. We first study the impact of the imbalance- and noise-tailored losses considered in Section2 during finetuning of the two-stage learning process. Namely,
Weblong-tailed training datasets often underperforms on a class-balanced test dataset. As datasets are scaling up nowadays, the long-tailed nature poses critical difficulties to … WebSep 21, 2024 · In this paper, we propose Balanced-MixUp, a new imbalanced-robust training method that mixes up imbalanced (instance-based) and balanced (class-based) …
WebSep 12, 2024 · Long-tailed distribution generally exists in large-scale face datasets, which poses challenges for learning discriminative feature in face recognition. Although a few works conduct preliminary research on this problem, the value of the tail data is still underestimated. This paper addresses the long-tailed problem from the perspective of …
WebMar 22, 2024 · In this paper, at the original batch level, we introduce a class-balanced supervised contrastive loss to assign adaptive weights for different classes. At the Siamese batch level, we present a ... how to store office suppliesWebAug 25, 2016 · The Two Types of Self-Service Data Preparation Tools. Data preparation and blending features are found in two types of self-service tools: Visual analytics … readability plusWebFeature Space Augmentation for Long-Tailed Data 5 2.3 Transfer Learning Past works in the domain of transfer learning and few-shot learning [42,2,32, 44,31,47] have been conducted to solve the long-tailed problem. Our work shares a similar assumption with these works that the information from the head classes can be used to help the tail classes. readability pronunciationWebThe imbalanced distribution of long-tailed data leads classifiers to overfit the data in head classes and mismatch with the training and testing distributions, especially for tail … readability pdfWebOptimize product blending using Excel spreadsheets and Lingo software—Part 2. Linear programming (LP) for blending. LP is an optimization model that can be used to good … how to store old recordsWebJul 19, 2024 · The imbalanced distribution of long-tailed data leads classifiers to overfit the data in head classes and mismatch with the training and testing distributions, especially … readability programs freeWebSep 16, 2024 · Due to the difficulty of cancer samples collection and annotation, cervical cancer datasets usually exhibit a long-tailed data distribution. When training a detector to detect the cancer cells in a WSI (Whole Slice Image) image captured from the TCT (Thinprep Cytology Test) specimen, head categories (e.g. normal cells and inflammatory … readability py cs50