Webdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor.to(device) 这将根据cuda是否可用来选择设备,然后将张量转移到该设备上。 另外,请确保在使 … WebApr 9, 2024 · for data in eval_dataloader: inputs, labels = data inputs = inputs.to (device, non_blocking=True) labels = labels.to (device, non_blocking=True) preds = quantized_eval_model (inputs).clamp (0.0, 1.0) Model self.quant = torch.quantization.QuantStub () self.conv_relu1 = ConvReLu (1, 64, _kernel_size=5, …
Tensor Attributes — PyTorch 2.0 documentation
WebFor each CUDA device, an LRU cache of cuFFT plans is used to speed up repeatedly running FFT methods (e.g., torch.fft.fft() ... Also, once you pin a tensor or storage, you can use asynchronous GPU copies. Just pass an additional non_blocking=True argument to a to() or a cuda() call. This can be used to overlap data transfers with computation. Webdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tensor.to(device) 这将根据cuda是否可用来选择设备,然后将张量转移到该设备上。 另外,请确保在使用.to()函数之前已经创建了Tensor并且Tensor是未释放的,否则可能会出现相关的错误。 softy girl roblox
Can QAT inference on CUDA? - quantization - PyTorch Forums
WebIf this object is already in CUDA memory and on the correct device, then no copy is performed and the original object is returned. Parameters. device (torch.device) – The destination GPU device. Defaults to the current CUDA device. non_blocking – If True and the source is in pinned memory, the copy will be asynchronous with respect to the ... WebNov 16, 2024 · install pytorch run following script: _sleep ( int ( 100 * get_cycles_per_ms ())) b = a. to ( device=dst, non_blocking=non_blocking) self. assertEqual ( stream. query (), not non_blocking) stream. synchronize () self. assertEqual ( a, b) self. assertTrue ( b. is_pinned () == ( non_blocking and dst == "cpu" )) WebWhen non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices. See below for examples. Note This method modifies the module in-place. Args: device ( torch.device ): the desired device of the parameters and buffers in this module softy homes